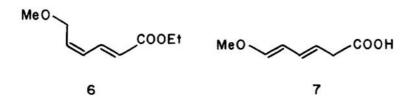
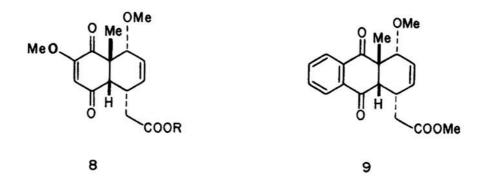

SODIUM 6-METHOXY-(<u>E,E</u>)-3,5-HEXADIENOATE: A USEFUL DIENE IN THE AQUEOUS DIELS-ALDER REACTION


Paul A. Grieco,* Kiyoshi Yoshida, and Zhen-min He Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Summary: The sensitive dienol ether functionality in sodium 6-methoxy-(E,E)-3,5-hexadienoate has been shown to be compatible with the conditions of the aqueous Diels-Alder reaction.

In connection with a variety of synthetic objectives and our interest in developing the potential of the aqueous Diels-Alder reaction,¹ we set out to examine the transformation generalized in equation <u>1</u> in which the initially formed adduct 3 is capable of either directly undergoing, during the course of the Diels-Alder reaction, or in a separate operation, β -elimination of methoxide with formation of 4. Of major concern to us was the compatibility of the sensitive dienol ether with the aqueous, often acidic, conditions² of the reaction and the regiochemical consequences of bringing 1 and 2 together in water-

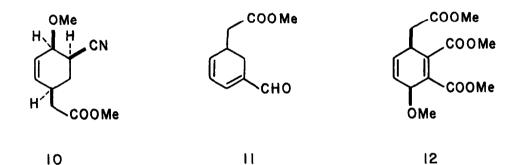


Diene 1 was generated in situ from 6-methoxy- $(\underline{E},\underline{E})$ -3,5-hexadienoic acid (7) which was prepared from 4-methoxy- (\underline{Z}) -2-buten-1-ol (5).³ Oxidation $[(COCl)_2, DMSO, i-Pr_2NEt, CH_2Cl_2]$ of 5 and subsequent condensation with the sodium salt of triethylphosphonoacetate in tetrahydrofuran afforded ethyl 6-methoxy- $2(\underline{E}), 4(\underline{Z})$ -hexadienoate (6). Treatment of 6 with potassium hydroxide in aqueous methanol provided in 95% yield the corresponding acid which was quantitatively deconjugated (2.2 equiv. LDA, THF, -78°C) to 7.4 Deconjugation of the 6-methoxy-(E,E)-

2,4-hexadienoic acid, readily available from 4-methoxy- (\underline{E}) -2-buten-1-ol, provided mainly the undesired 6-methoxy-3(E)-5(Z)-hexadienoic acid.

The compatibility of diene 1 with the aqueous Diels-Alder reaction and the regiochemical question were initially addressed by examining the condensation of 1 with substituted benzoquinones. Reaction of 2-methyl-6-methoxybenzoquinone with 4.75 equivalents of sodium 6methoxy- $(\underline{E},\underline{E})$ -3,5-hexadienoate (1) [generated <u>in situ</u> from 5.0 equiv of 1 and 4.75 equiv of sodium bicarbonate]² in water (<u>ca. 2.0 M</u> in diene) gave rise after 10 min to a 93% yield of an adduct 8 (R=H) which was characterized as its methyl ester 8 (R=Me), mp 114-116°C, by treatment of the acid with ethereal diazomethane. The regiochemical issue was readily resolved by examination of the ¹H NMR (360 MHz) spectra of adduct 8 (R=Me). For comparison purposes we examined the reaction of 2-methyl-6-methoxybenzoquinone with methyl 6-methoxy-(<u>E,E</u>)-3,5-hexadienoate in benzene at room temperature and 80°C. No reaction occurred at room temperature

after 4 h. In contrast a 69% yield of 8 (R=Me) was isolated after 12 h at 80°C. Diene 1 is capable of surviving long reaction times. For instance, the condensation of 1 with the sluggish dienophile 2-methyl-1,4-naphthoquinone in water at ambient temperature required 40 h to realize a > 95% yield of adduct 9, mp 128-129°C, after esterification.⁵


Diene ${f l}$ is also compatible with long reaction times at elevated temperatures. For

Entry	Dienophile	Temperature	Time	Product(s) ^b	Yield ^C
I	Ý	R. T.	0.5 h		67%
2	Ŷ	R.T.	3 h		66%
3	сн 2 снсно	Ŗ.T.	3 h		76%
4	СН ₂ С (Ме)СНО	R.T.	4 h	MeO Me H.L.CHO H.COOMe	6 5 % ^d
5	MeOOCC∰ CCOOMe	R.T.	24 h		50%
6		R.T.	72 h	MeO COOMe H COOMe H COOMe H COOMe H COOMe	63% [°]
7	Dimethyl Maleate	50°C	48 h		62%
8	Dimethyl Fumarate	50°C	24 h	OMe COOMe COOMe COOMe	71% ^f

TABLE I." Reaction of Sodium 6-Methoxy-(<u>E,E</u>)-3,5-hexadienoate in Water with Some Standard Dienophiles.

•All reactions were carried out 2.0 <u>M</u> in diene. A five-fold excess of diene was employed. ^bproducts were characterized as their methyl esters. ^cyields reported are for chromatographically pure materials. ^dApproximately 3% of the corresponding exo adduct was isolated. ^ethe endo:exo ratio was 2:1. ^fthe product ratio was 1:1.

example, condensation of diene 1 with the sluggish dienophile, acrylonitrile, required heating at 50° C for 72 h in order to realize an 80% yield of Diels-Alder adduct 10. Additional examples appear in the Table. It will be noted that all the reactions cited in the Table give rise to endo Diels-Alder adducts. In the case of methyl acetoxymethylacrylate (entry 6), a 2:1 endo:exo ratio was observed. The sensitive endo adduct isolated from the reaction of 1 with acrolein underwent β -elimination with the formation of 11 upon exposure to silica gel. In the reaction of 1 with dimethyl acetylenedicarboxylate (entry 5) the endo adduct 12 could not be detected.

<u>Acknowledgements</u>: This investigation was supported by a Public Health Service Research Grant (GM 33605) from the National Institute of General Medical Sciences.

References

- Rideout, D.C.; Breslow, R. J. Am. Chem. Soc., 1980, 102, 7816. Grieco, P.A.; Garner, P.;
 He, Z. <u>Tetrahedron Lett.</u>, 1983, 24, 1901. Breslow, R.; Maitra, U.; Rideout, D. <u>Ibid.</u>,
 1983, 24, 1901. Grieco, P.A.; Yoshida, K.; Garner, P. J. Org. <u>Chem.</u>, 1983, 48, 3137.
- Cf. Grieco, P.A.; Garner, P.; Yoshida, K.; Huffman, J.C. <u>Tetrahedron Lett.</u>, 1983, <u>24</u>, 3087.
- 3. Kalinowski, H.-O.; Grass, G.; Seebach, D. Chem. Ber., 1981, 114, 477.
- Zimmerman, M.P. <u>Syn Commun.</u>, 1977, 7, 189. Kende, A.S.; Toder, B.H. <u>J. Org. Chem.</u>, 1982, 47, 168.
- 5. The benzoquinone Diels-Alder adducts with the exception of 8 upon exposure to silica gel undergo isomerization to the trans fused adducts.

(Received in USA 30 July 1984)